Related papers
Fake News Detection in Social Media: Hybrid Deep Learning Approaches
Beman Hamidja Kamagaté
Journal of Advances in Information Technology
Social media refers to communication channels on Internet that enable the creation and publication of content generated by the user and interaction between users. Given the accessibility to these means of communication and their rapidity, people resort more to them comparatively to the traditional media including radio, television and newspapers. However, dubious pieces of information such as fake news are often disseminated for malicious purposes. The proliferation of fake news has a strong negative impact on a society such as damage to the reputation of a personality, an organization or the aggravation of conflicts between its members. Due to the proliferation of fake news on these websites, the notion of veracity of information becomes a crucial issue. Research based on machine learning is promising. However, one of the main limitations is the efficiency of predictions. As a solution to detect fake news, we have proposed two models based on hybrid deep learning and evaluated our models on the two real datasets, namely ISOT and FAKES. An experience of the proposed models to detect fake news, allowed to obtain on ISOT an accuracy of 99% for both models and on FAKES , we obtain an accuracy of 68% for one the models and an accuracy of 63% for other. Other experiments in generalizing models on these data sets have proposed. The results obtained are better than other machine learning models.
View PDFchevron_right
Accurate metaheuristic deep convolutional structure for a robust human gait recognition
Mohamed Maher Ata
International Journal of Electrical and Computer Engineering (IJECE)
Gait recognition has become a developing technology in various security, industrial, medical, and military applications. This paper proposed a deep convolutional neural network (CNN) model to authenticate humans via their walking style. The proposed model has been applied to two commonly used standardized datasets, Chinese Academy of Sciences (CASIA) and Osaka University-Institute of Scientific and Industrial Research (OU-ISIR). After the silhouette images have been isolated from the gait image datasets, their features have been extracted using the proposed deep CNN and the traditional ones, including AlexNet, Inception (GoogleNet), VGGNet, ResNet50, and Xception. The best features were selected using genetic, grey wolf optimizer (GWO), particle swarm optimizer (PSO), and chi-square algorithms. Finally, recognize the selected features using the proposed deep neural network (DNN). Several performance evaluation parameters have been estimated to evaluate the model’s quality, including...
View PDFchevron_right
Study of Deep Learning Methods f or Fingerprint Recognition
KOUASSI Médard
International Journal of Recent Technology and Engineering (IJRTE), 2021
Biometric systems aim to reliably identify and authenticate an individual using physiological or behavioral characteristics. Traditional systems such as the use of access cards, passwords have shown limitations such as forgotten passwords, stolen cards, etc. As an alternative, biometric systems present themselves as efficient systems with a high reliability due to the physiological characteristics of each individual. This paper focuses on a deep learning method for fingerprint recognition. The described architecture uses a pre-processing phase in which grayscale images are represented on the RGB bands and then merged to obtain color images. On the obtained color images will be extracted the characteristics of the fingerprints textures.The fingerprint images after preprocessing are used in a deep convolution network system for decision making. The method is robust with an accuracy of over 99.43% and 99.53% with the respective variants densenet-201 and ResNet-50.
View PDFchevron_right
Realtime face matching and gender prediction based on deep learning
Kittikhun Meethongjan
International Journal of Electrical and Computer Engineering (IJECE)
Face analysis is an essential topic in computer vision that dealing with human faces for recognition or prediction tasks. The face is one of the easiest ways to distinguish the identity people. Face recognition is a type of personal identification system that employs a person’s personal traits to determine their identity. Human face recognition scheme generally consists of four steps, namely face detection, alignment, representation, and verification. In this paper, we propose to extract information from human face for several tasks based on recent advanced deep learning framework. The proposed approach outperforms the results in the state-of-the-art.
View PDFchevron_right
Examining Gender Bias of Convolutional Neural Networks via Facial Recognition
Tony Gwyn
Future Internet, 2022
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
View PDFchevron_right
Predicting image credibility in fake news over social media using multi-modal approach
Bhuvanesh Singh
Neural Computing and Applications, 2021
Social media are the main contributors to spreading fake images. Fake images are manipulated images altered through software or by other means to change the information they convey. Fake images propagated over microblogging platforms generate misrepresentation and stimulate polarization in the people. Detection of fake images shared over social platforms is extremely critical to mitigating its spread. Fake images are often associated with textual data. Hence, a multi-modal framework is employed utilizing visual and textual feature learning. However, few multi-modal frameworks are already proposed; they are further dependent on additional tasks to learn the correlation between modalities. In this paper, an efficient multi-modal approach is proposed, which detects fake images of microblogging platforms. No further additional subcomponents are required. The proposed framework utilizes explicit convolution neural network model EfficientNetB0 for images and sentence transformer for text analysis. The feature embedding from visual and text is passed through dense layers and later fused to predict fake images. To validate the effectiveness, the proposed model is tested upon a publicly available microblogging dataset, MediaEval (Twitter) and Weibo, where the accuracy prediction of 85.3% and 81.2% is observed, respectively. The model is also verified against the newly created latest Twitter dataset containing images based on India's significant events in 2020. The experimental results illustrate that the proposed model performs better than other state-of-art multi-modal frameworks.
View PDFchevron_right
Extraction of image resampling using correlation aware convolution neural networks for image tampering detection
International Journal of Electrical and Computer Engineering (IJECE)
International Journal of Electrical and Computer Engineering (IJECE), 2022
Detecting hybrid tampering attacks in an image is extremely difficult; especially when copy-clone tampered segments exhibit identical illumination and contrast level about genuine objects. The existing method fails to detect tampering when the image undergoes hybrid transformation such as scaling, rotation, compression, and also fails to detect under smallsmooth tampering. The existing resampling feature extraction using the Deep learning techniques fails to obtain a good correlation among neighboring pixels in both horizontal and vertical directions. This work presents correlation aware convolution neural network (CA-CNN) for extracting resampling features for detecting hybrid tampering attacks. Here the image is resized for detecting tampering under a small-smooth region. The CA-CNN is composed of a three-layer horizontal, vertical, and correlated layer. The correlated layer is used for obtaining correlated resampling feature among horizontal sequence and vertical sequence. Then feature is aggregated and the descriptor is built. An experiment is conducted to evaluate the performance of the CA-CNN model over existing tampering detection methodologies considering the various datasets. From the result achieved it can be seen the CA-CNN is efficient considering various distortions and post-processing attacks such joint photographic expert group (JPEG) compression, and scaling. This model achieves much better accuracies, recall, precision, false positive rate (FPR), and F-measure compared existing methodologies.
View PDFchevron_right
Pedestrian classification on transfer learning based deep convolutional neural network for partial occlusion handling
Nichnan Kittiphattanabawon
International Journal of Power Electronics and Drive Systems, 2023
The investigation of a deep neural network for pedestrian classification using transfer learning methods is proposed in this study. The development of deep convolutional neural networks has significantly improved the autonomous driver assistance system for pedestrian classification. However, the presence of partially occluded parts and the appearance variation under complex scenes are still robust to challenge in the pedestrian detection system. To address this problem, we proposed six transfer learning models: end-to-end convolutional neural network (CNN) model, scratch-trained residual network (ResNet50) model, and four transfer learning models: visual geometry group 16 (VGG16), GoogLeNet (InceptionV3), ResNet50, and MobileNet. The performance of the pedestrian classification was evaluated using four publicly datasets:
View PDFchevron_right
Accuracy study of image classification for reverse vending machine waste segregation using convolutional neural network
Sazuan Azam, International Journal of Electrical and Computer Engineering (IJECE)
International Journal of Electrical and Computer Engineering (IJECE), 2024
This study aims to create a sorting system with high accuracy that can classify various beverage containers based on types and separate them accordingly. This reverse vending machine (RVM) provides an image classification method and allows for recycling three types of beverage containers: drink carton boxes, polyethylene terephthalate (PET) bottles, and aluminium cans. The image classification method used in this project is transfer learning with convolutional neural networks (CNN). AlexNet,
View PDFchevron_right
PithaNet: A transfer learning-based approach for traditional pitha classification
aatik asif khan akash
International Journal of Electrical and Computer Engineering (IJECE)
Pitha, pithe, or peetha are all Bangla words referring to a native and traditional food of Bangladesh as well as some areas of India, especially the parts of India where Bangla is the primary language. Numerous types of pithas exist in the culture and heritage of the Bengali and Bangladeshi people. Pithas are traditionally prepared and offered on important occasions in Bangladesh, such as welcoming a bride grooms, or bride, entertaining guests, or planning a special gathering of family, relatives, or friends. The traditional pitha celebration and pitha culture are no longer widely practiced in modern civilization. Consequently, the younger generation is unfamiliar with our traditional pitha culture. In this study, an effective pitha image classification system is introduced. convolutional neural network (CNN) pre-trained models EfficientNetB6, ResNet50, and VGG16 are used to classify the images of pitha. The dataset of traditional popular pithas is collected from different parts of ...
View PDFchevron_right